

Subscriber access provided by ISTANBUL TEKNIK UNIV

Novel Naphthoguinones from Conospermum incurvum

Jin-Rui Dai, Laurent A. Decosterd, Kirk R. Gustafson, John H. Cardellina II, Glenn N. Gray, and Michael R. Boyd

J. Nat. Prod., 1994, 57 (11), 1511-1516• DOI: 10.1021/np50113a006 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50113a006 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

NOVEL NAPHTHOQUINONES FROM CONOSPERMUM INCURVUM

JIN-RUI DAI,¹ LAURENT A. DECOSTERD,² KIRK R. GUSTAFSON, JOHN H. CARDELLINA II, GLENN N. GRAY, and Michael R. Boyd*

Laboratory of Drug Discovery Research and Development, Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute, Building 1052, Room 121, Frederick, Maryland 21702-1201

ABSTRACT.—During the reisolation of the trimeric naphthoquinone derivative conocurvone [1] from an extract of the Australian shrub *Conospermum incurvum*, six monomeric naphthoquinones were isolated. These include three novel 1,4-naphthoquinone derivatives: 3-methyl-14,15-dihydro-15-hydroxyteretifolione B [3], 3-methyl-14,15-dihydro-15-hydroxyteretifolione B [3], 3-methyl-14,15-dihydro-15-hydroxyteretifolione B [3], anethyl-14,15-dihydro-15-hydroxyteretifolione B methyl ether [4], and 2,3-dimethyl-6-hydroxy-7-methoxy-1,4-naphthoquinone [5]. In addition, the previously reported compounds 3-methylteretifolione B [6], 3-methylteretifolione B methyl ether [7], and 8-geranyl-2,7-dihydroxy-3-methyl-1,4-naphthoquinone [8] were isolated and identified. The structures of the novel 1,4-naphthoquinones were elucidated by spectral methods. While conocurvone [1] is a potent inhibitor of HIV-1-induced cell killing, all of the monomeric naphthoquinone derivatives were inactive against HIV-1.

A previous report from our laboratory detailed the isolation of conocurvone [1], a novel HIV-1 inhibitory trimeric naphthoquinone from an extract of the endemic Australian shrub *Conospermum incurvum* Lindley (Proteaceae) (1). The related monomeric quinone teretifolione B [2] was also obtained and its absolute stereochemistry estab-

¹Chemical Synthesis and Analysis Laboratory, Program Resources, Inc./DYNCORP, Frederick, Maryland 21702–1201.

²Current Address: Division of Clinical Pharmacology, Department of Internal Medicine, Centre Universitaire Hospitalier Vaudois, Lausanne, Switzerland.

lished via an X-ray crystallographic analysis. We have been investigating the reisolation of conocurvone [1] on a larger scale (2) to support detailed biological evaluation of its anti-HIV-1 activity. The crude extract was initially fractionated on a Sanki centrifugal partition chromatograph (cpc) in the ascending mode with hexane-EtOAc-MeOH-H₂O (17:7:13:3). Fractions from the cpc were further purified by hplc or by reinjection on the Sanki cpc to afford conocurvone [1], teretifolione B [2], and six additional naphthoquinones. Three of these were novel 1,4-naphthoquinones, namely, 3-methyl-14,15-dihydro-15-hydroxyteretifolione B [3], the related methyl ether [4], and 2,3dimethyl-6-hydroxy-7-methoxy-1,4-naphthoquinone [5].³ The other three compounds, 3-methylteretifolione B [6], 3-methylteretifolione B methyl ether [7], and 8-geranyl-2,7-dihydroxy-3-methyl-1,4-naphthoquinone [8]³ have previously been reported from *C. teretifolium* (3,4). The structures of compounds **3–5** were elucidated by spectroscopic techniques, while the structures of **6–8** were confirmed by independent spectral analyses and comparison of their spectral data with published values.

RESULTS AND DISCUSSION

The presence of conocurvone [1] and teretifolione B [2] was confirmed by comparison with authentic samples. The spectral data obtained in this investigation for 3-methylteretifolione B [6], 3-methylteretifolione B methyl ether [7], and 8-geranyl-2,7-dihydroxy-3-methyl-1,4-naphthoquinone [8] were consistent with literature values

³For clarity of discussion and comparison of spectral data, the numbering scheme for this compound has been assigned so that it is consistent with that of teretifolione B [2] and others in the series of monomeric naphthoquinones.

(3,4). However, only ¹H-nmr data have previously been reported for these compounds. We have independently confirmed the proposed structures and fully assigned the ¹Hand ¹³C-nmr resonances of these compounds by a variety of nmr techniques, including HMQC and HMBC proton-detected heteronuclear correlation experiments. The ¹Hnmr data obtained for compounds **6** and **7** were in very close agreement with published values, but a slight discrepancy was noted for compound **8**. The C-10 olefin proton was observed at δ 5.13, while the previously reported value was δ 5.25 (3,4). All other proton resonances that were measured for **8** were similar to literature values. An nOe experiment showing significant nOe interactions between the C-10 proton and the C-12 allylic protons confirmed the olefin geometry as *E*. Therefore, we are unable to explain the minor difference between our data for **8** and the literature values (3,4).

Compound **3** was isolated as an optically active, $[\alpha]D + 38.8^{\circ}$, dark orange powder. Hreims revealed a molecular formula of $C_{21}H_{24}O_5$, with a molecular ion at m/z 356.1639. Absorptions in the ir (1644 cm⁻¹) and uv (219,292 nm) spectra of **3** indicated the presence of conjugated carbonyl groups. The ¹H- and ¹³C-nmr spectra (Tables 1 and 2) were closely related to those observed for 3-methylteretifolione B [**6**]. However, in the carbon spectrum of **3**, signals for the trisubstituted olefin previously assigned in **6** were replaced by an aliphatic methylene and a tertiary alcohol. Two exchangeable proton resonances at δ 7.44 and δ 4.07⁴ indicated the presence of one phenol and one aliphatic

Position	Compound							
	3	4	5	6	7	8		
H-5	7.95 d	7.89 d	7.53 s	7.93 d	7.86 d	7.99 d		
	(8.5)	(8.5)		(8.5)	(8.5)	(8.5)		
Н-6	7.03 dd	6.99 dd		7.02 d	6.96 dd	7.11 d		
	(8.5, 1.0)	(8.5, 1.0)		(8.5)	(8.5, 1.0)	(8.5)		
H-8		(7.49 s	(((,		
H-9	7.81 d	7.71 d		7.79 d	7.69 d	4.05 d		
	(10.5)	(10.5)		(10.5)	(10.5)	(7.0, 2H)		
H-10	5.92 d	5.86 d		5.90 d	5.83 d	5.13 m		
	(10.5)	(10.5)		(10.5)	(10.5)			
H-12	1.70 m,	1.64 m,		1.66 m,	1.64 m.	2.05 m		
	1.75 m	1.74 m		1.75 m	1.72 m	(2H)		
H-13	1.47 m	1.50 m		2.07 m	2.04 m	2.05 m		
	(2H)	(2H)		(2H)	(2H)	(2H)		
H-14	1.44 m	1.43 m		5.04 m	5.02 m	5.01 m		
	(2H)	(2H)	1			2		
CH ₃ -16	1.17 s	1.16 s		1.61 s	1.60 s	1.63 s		
CH ₃ -17	1.18 s	1.17 s		1.52 s	1.51 s	1.56 s		
CH ₃ -18	1.41 s	1.38 s		1.41 s	1.39 s	1.84 s		
CH ₄ -2		_	2.11 s					
CH ₃ -3	2.04 s	2.02 s	2.11 s	2.02 s	1.99 s	2.04 s		
OCH ₃ -2		4.00 s			3.97 s			
OCH ₃ -7			4.01 s					
ОН	4.07 ^b s	4.07 ^b s	6.10 s	7.49 s	1	7.49 s		
	7.44 s							

TABLE 1. ¹H-Nmr Spectral Data (in CDCl₃) for Compounds 3–8.^a

Chemical shifts (δ) were referenced relative to the internal solvent signal. Coupling constants in parentheses are in Hz.

^bObserved in DMSO- d_6 .

⁴Exchangeable proton resonances were observed in DMSO-d₆ spectra.

Position	Compound						
	3	4	5	6	7	8	
C-1	183.2	183.6	184.2	183.2	183.1	183.0	
C-2	153.2	158.4	142.8 ^b	153.3	158.3	153.5	
C-3	118.6	130.4	142.9 ^b	118.6	120.5	118.4	
C-4	184.4	185.1	184.3	184.4	185.0	184.7	
C-4a	126.8	126.3	127.7	126.9	126.2	127.8	
C-5	128.7	128.3	112.0	128.7	128.2	127.6	
С-6	121.7	121.0	150.1	121.7	120.8	121.0	
C-7	157.8	158.5	150.4	158.0	158.5	159.4	
C-8	121.2	120.6	107.6	121.2	130.3	130.3	
C-8a	123.2	126.0	126.6	123.3	126.0	127.7	
C-9	120.2	120.4		120.1	120.2	25.3	
C-10	135.1	134.0		135.1	140.0	120.2	
C -11	79.2	79.2		79.2	79.1	139.2	
C-12	41.6	41.6		41.2	41.1	39.7	
C-13	18.7	18.8		22.6	22.6	26.4	
C-14	43.6	43.8		123.5	123.5	123.7	
C-15	70.9	70.9		132.1	132.0	132.0	
C-16	29.3°	29.3°		25.6	25.6	25.6	
C-17	29.2°	29.2 ^c		17.6	17.5	17.7	
C-18	26.5	26.5		26.5	26.5	16.4	
CH ₃ -2			12.8				
СН ₃ -3	8.5	9.1	12.8	8.5	9.0	8.5	
OCH,		60.8	56.5		60.7		

TABLE 2. ¹³C-Nmr Spectral Data (in CDCl₃) for Compounds 3-8.^a

^tChemical shifts (δ) were referenced relative to the internal solvent signal.

^{b,c}Assignments within a column may be reversed.

hydroxyl group. This suggested that compound **3** was the hydrate of **6** resulting from Markovnikov-type addition of H_2O to the C-14–C-15 side-chain olefin. Long-range heteronuclear correlations from the oxygenated C-15 carbon (δ 70.9) to the C-13 methylene protons and from C-14 (δ 43.6) to the C-16, C-17 methyl groups supported this assignment. The C-2 hydroxyl and C-3 methyl substitution pattern about the naphthoquinone moiety was confirmed by correlations from C-1 (δ 183.2) to the C-2 hydroxyl proton and from C-4 (δ 184.4) to H-5. All other heteronuclear correlations observed were fully consistent with the proposed structure of 3-methyl-14,15-dihydro-15-hydroxyteretifolione B for **3**, and permitted complete assignments of all ¹H- and ¹³C-nmr signals to be made. The fact that both teretifolione B [**2**] and compound **3** have strong, positive optical rotations indicates that they have the same (R) absolute stereochemistry at C-11.

Compound 4, $[\alpha]D + 32.1^{\circ}$, was also obtained as a dark orange powder. The hreims of 4 revealed a molecular formula of $C_{22}H_{26}O_5$ (M⁺, m/z 370.1805) and the ir and uv spectra indicated the presence of conjugated carbonyl chromophores (1698, 1666 cm⁻¹; 222, 266 nm). The ¹H- and ¹³C-nmr spectra of 4 (Tables 1 and 2) closely matched those of compound 3. However, there was only one exchangeable proton signal (δ 4.07),⁴ but there was an additional methoxyl group present (¹H δ 4.00 3H, s; ¹³C δ 60.8). HMBC correlations from C-2 (δ 158.4) to the methoxyl protons and from C-4 (δ 185.1) to the C-3 methyl protons defined the regiochemical placement of these substituents. Complete ¹H- and ¹³C-nmr assignments for compound 4 were made from heteronuclear correlation data. These data established that compound 4 is the C-2 methyl ether derivative of compound 3. Compound **5** was obtained as an optically inactive yellow powder. The hreims spectrum of **5** indicated a molecular formula of $C_{13}H_{12}O_4$ for the molecular ion at m/z 232.0729. The ir and uv spectra of **5** indicated the presence of conjugated carbonyl groups (ir 1644 cm⁻¹; uv 277 nm). The ¹H-nmr spectrum of **5** (Table 1) exhibited two singlet aromatic protons at δ 7.53 and 7.49, a six-proton singlet due to two methyl groups at δ 2.11, one methoxyl at δ 4.01 (s) and an exchangeable phenol resonance at δ 6.10. The ¹³C-nmr spectrum (Table 2) displayed a two-carbon signal at δ 12.8 due to two methyls, one methoxyl group at δ 56.5 ppm, two quinone carbonyls at δ 184.2 and 184.3, and eight additional sp² carbons making up a naphthoquinone skeleton. This indicated that compound **5** was a 1,4-naphthoquinone substituted with two methyls, one methoxyl and one hydroxyl group.

The assignment of ¹H- and ¹³C-nmr spectral data and the structural elucidation of compound **5** were supported by HMQC and HMBC experiments. Long-range coupling observed between the quinone carbonyl carbons and the methyl protons established the methyl substituents at C-2 and C -3. Correlations between H-5 (δ 7.53), C-4 (δ 184.3), C-7 (δ 150.4), and C-8a (δ 126.6), between H-8 (δ 7.49), C-6 (δ 150.1), and C-4a (δ 127.7), between the methoxy group (δ 4.01) and C-7 (δ 150.4), as well as between the phenolic OH (δ 6.10) and C-5 (δ 112.0) and C-7 (δ 150.4), firmly established the structure of compound **5** as 2,3-dimethyl-6-hydroxy-7-methoxy-1,4-naphthoquinone.

Testing of **3–8** in an in vitro XTT-based anti-HIV-1 assay (5,6), revealed that none of these "monomeric" naphthoquinone derivatives were active. This is in sharp contrast to the reported potent anti-HIV activity of the "trimeric" conocurvone [1], but consistent with the reported inactivity of the monomer teretifolione B [2] and a related 1,4-naphthoquinone "dimer" (1).

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Centrifugal partition chromatography (cpc) was performed at 24° with a cartridge Sanki model NMF instrument. An ISCO V absorbance detector (280 nm) and a Foxy fraction collector were connected to the main Sanki cpc unit. Hplc was performed on a Rainin system equipped with Rabbit-HP HPX pumps and a Dynamax UV-1 detector. Optical rotations were measured on a Perkin-Elmer 241 polarimeter; uv spectra were recorded on a Beckman DU-64 spectrophotometer; ir spectra were recorded on a Perkin-Elmer 1600 series Ftir; nmr spectra were recorded on a Varian VXR 500 spectrometer at 25°. Hreims spectra were recorded with a Finnigan MAT 90 spectrometer.

PLANT MATERIAL.—The roots of *Conospermum incurvum* Lindley (collection number Q73H128) were collected in February 1991, on the Northern Sand Plains, Western Australia. Ground plant material (11.416 kg) was percolated at room temperature in CH_2Cl_2 , and then in CH_2Cl_2 -MeOH (1:1), and finally washed with 100% MeOH. Solvent was removed *in vacuo* to produce CH_2Cl_2 , CH_2Cl_2 -MeOH (1:1), and MeOH extracts (69.81 g, 145.73 g, and 23.81 g, respectively).

EXTRACTION AND ISOLATION.—A 1.5-g portion of the CH_2Cl_2 extract was fractionated by cpc with hexane-EtOAc-MeOH-H₂O (17:7:13:3), using the ascending mode, a spin rate of 500 rpm, a flow rate of 2.7 ml/min, and uv detection at 280 nm. A total of 12 fractions were obtained. Conocurvone [1] (9 mg) and compound **6** (30 mg) were obtained from cpc fraction 3 by two different hplc methods. Pure conocurvone [1] was obtained by phenyl-bonded phase hplc using CH₃CN-H₂O (17:3, 0.1% HOAc by volume), while compound **6** was purified by Si gel hplc eluting with CH₂Cl₂-MeOH (19:1). Teretifolione B [**2**] (30 mg) was isolated from cpc fraction 5, compound **4** (20 mg) was isolated from cpc fraction 7 (68 mg), and compound **8** (5 mg) was isolated from cpc fraction 6 (24 mg) using the same hplc conditions as those used for **6**. Hplc on a phenyl-bonded phase, eluting with CH₂CN-H₂O (3:1, 0.1% HOAc by volume), of 23 mg of cpc fraction 9 and 40 mg of cpc fraction 8, provided compound **3** (12 mg) and compound **5** (7 mg), respectively. A 100-mg portion of cpc fraction 2 was reinjected on the Sanki cpc using the exact same conditions as the original cpc run to give 60 mg of compound **7**.

3-Methyl-14,15-dibydro-15-hydroxyteretifolione B [3].—[α]D +38.8° (c=0.56, CHCl₃); uv λ max (MeOH) (log ϵ) 219 (5.33), 292 (5.12), 392 (4.66) nm; ir (film) ν max 3373, 2970, 1644, 1561, 1391, 1351, 847 cm⁻¹; for ¹H and ¹³C nmr, see Tables 1 and 2, respectively; eims m/z 356 (M⁺, 4), 341 [M-CH₃]⁺ (2), 338 [M-H₂O]⁺ (1), 270 [M-C₃H₁₀O]⁺ (1), 255 [M-C₃H₁₀O-CH₃]⁺ (100), 227

 $[M-C_{3}H_{10}O-CH_{3}-CO]^{+}$ (19), 199 (1), 149 (4), 85 (1), 69 (1); hreims m/z 356.1639 ($M^{+}, C_{21}H_{24}O_{5}$, calcd 356.1624).

3-Metbyl-14,15-dibydro-15-bydroxyteretifolione B metbyl ether [4].—[α]D +32.1° (c=0.80, CHCl₃); uv $\lambda \max(MeOH)(\log \epsilon) 222(5.23), 266(5.12), 370(4.41) nm; ir (film) <math>\nu \max 3478, 2970, 1698, 1666, 1564, 1372, 1279, 983 cm^{-1}; for ¹H and ¹³C nmr, see Tables 1 and 2, respectively; eims$ *m*/z 370 (M⁺, 6), 355 [M-CH₃]⁺ (5), 352 [M-H₂O]⁺ (4), 297 (2), 285 (11), 284 [M-C₅H₁₀O]⁺ (1), 270 (33), 269 [M-C₅H₁₀O-CH₃]⁺ (100), 241 [M-C₅H₁₀O-CH₃-CO]⁺ (1), 226 (12), 170 (4), 149 (5), 115 (2), 83 (1), 59 (2); hreims*m*/z 370.1805 (M⁺, C₂₂H₂₆O₅, calcd 370.1780).

2,3-Dimethyl-6-bydroxy-7-methoxy-1,4-naphthoquinone [5].—Uv λ max (MeOH) (log ϵ) 277 (5.45), 352 (4.28) nm; ir (film) ν max 3300–3400, 1644, 1580, 1524, 1356, 1313, 1200, 889 cm⁻¹; for ¹H and ¹³C nmr, see Tables 1 and 2, respectively; eims m/z 232 (M⁺, 100), 217 [M–CH₃]⁺ (6), 215 (4), 214 [M–H₂O]⁺ (1), 204 [M–CO]⁺ (42), 189 [M–CO–CH₃]⁺ (57), 161 (17), 150 (11), 133 (5), 122 (13), 115 (5), 83 (3), 63 (2), 51 (6); hreims m/z 232.0729 (M⁺, C₁₃H₁₂O₄, calcd 232.0736).

3-Methylteretifolione B [6].— $[\alpha]D + 29.7^{\circ}$ (c=0.33, CHCl₃); for ¹H and ¹³C nmr, see Tables 1 and 2, respectively; eims m/z 338 (M⁺, 14), 323 [M-CH₃]⁺ (4), 295 [M-CH₃-CO]⁺ (1), 270 (1), 269 [M-C₅H₉]⁺ (2), 255 [M-C₆H₁₁]⁺ (100), 227 [M-C₆H₁₁-CO]⁺ (29), 199 (1), 115 (3), 69 (5).

3-Methylteretifolione B methyl ether [7].—[α]D +37.3° (c=0.73, CHCl₃); for ¹H and ¹³C nmr, see Tables 1 and 2, respectively; eims m/z 352 (M⁺, 49), 337 [M-CH₃]⁺ (16), 309 [M-CH₃-CO]⁺ (4), 284 (1), 283 [M-C₃H₉]⁺ (3), 269 [M-C₆H₁₁]⁺ (100), 255 (7), 241 [M-C₆H₁₁-CO]⁺ (4), 226 (24), 213 (2), 182 (13), 144 (6), 115 (6), 77 (2), 69 (15).

8-Geranyl-2,7-dibydroxy-3-methyl-1,4-naphthoquinone [8].—For ¹H and ¹³C nmr, see Tables 1 and 2, respectively; eims m/z 340 (M⁺, 71), 322 [M-H₂O]⁺ (4), 297 [M-C₃H₇]⁺ (54), 285 [M-C₄H₇]⁺ (2), 271 [M-C₅H₉]⁺ (62), 257 [M-C₆H₁₁]⁺ (22), 253 (68), 229 [M-C₈H₁₅]⁺ (100), 218 (66), 187 (44), 149 (37), 123 (35), 115 (18).

ANTI-HIV EVALUATIONS.—DMSO solutions of the purified compounds were tested in the XTT-based in vitro anti-HIV assay as described elsewhere (5,6).

ACKNOWLEDGMENTS

We thank T. McCloud for extraction of the plant material and J.B. McMahon for the anti-HIV evaluations. L.A. Decosterd was supported by a postdoctoral fellowship from the Swiss Cancer League.

LITERATURE CITED

- L.A. Decosterd, I.C. Parsons, K.R. Gustafson, J.H. Cardellina, II, J.B. McMahon, G.M. Cragg, Y. Murata, L.K. Pannell, J.R. Steiner, J. Clardy, and M.R. Boyd, J. Am. Chem. Soc., 115, 6673 (1993).
- 2. J.-R. Dai, LA. Decosterd, K.R. Gustafson, J.H. Cardellina, II, and M.R. Boyd, J. Liq. Chromatogr., submitted (1994).
- J.R. Cannon, K.R. Joshi, I.A. McDonald, R.W. Retallack, A.F. Sierakowski, and L.C.H. Wong, Tetrabedron Lett., 32, 2795 (1975).
- R.H. Thomson, "Naturally Occurring Quinones III: Recent Advances," Chapman and Hall, New York, 1987, pp. 206–209.
- 5. M.R. Boyd, in: "AIDS Etiology, Diagnosis, Treatment and Prevention." Ed. by V.T. DeVita, S. Hellman, and S.A. Rosenberg, Lippincot, Philadelphia, 1988, pp. 305-319.
- 6. R.J. Gulakowski, J.B. McMahon, P.G. Staley, R.A. Moran, and M.R. Boyd, J. Virol. Methods, 33, 87 (1991).

Received 10 May 1994